What is Biochar?

Boost the soil fertility with Biochar

In the Guide “The Science of Growing more Nutritious Vegs”, I shared 3 steps to improving the soil biology, boosting the soil fertility with mineral fertilisers, and bring nutrients to the soil & Vegs.
When boosting the soil fertility, I recommended using Biochar. But what is it, and how to use it to better grow Vegs??

Last updated with recent scientific research in April 2022

 

Biochar is a very pure, high-carbon form of charcoal that improves the structure, aeration, water-holding capacity and nutrient retention of soils and substrates while providing permanent refuge for beneficial microbiology.

Biochar is a charcoal-like substance that’s made by burning organic material from agricultural and forestry wastes (also called biomass) in a controlled process called pyrolysis.During the pyrolysis process, the organic material is converted into biochar, a stable form of carbon that can’t easily escape into the atmosphere. Biochar is black, highly porous, lightweight, fine-grained and has a large surface area.

Once you add it, it's permanent! It is believed that biochar has a long average dwelling time in soil, ranging from 1000 to 10,000 years, with an average of 5000 years. So you will reap the benefit for a while…

The application of biochar improves soil fertility through two mechanisms: adding nutrients to the soil (such as K, to a limited extent P, and many micronutrients) or retaining nutrients from other sources, including nutrients from the soil itself. However, the main advantage is to retain moisture and nutrients from other sources.

 

Biochar is charchoal that's been inoculated with LIFE = BIO. Terra Preta was a mix of organic matter, charcoal, humanure, and pottery chards that likely were bioceramic - it was made from more than charcoal and it hasn't been fully replicated. The chards are always overlooked and sometimes the BIO part of biochar is overlooked but it's crucial as it will sap soils of humus if soil biology is not added before adding it to the soil. You can spray compost tea or simply mix the biochar with compost before adding.

 

How to make Biochar?

Watch the whole day of the Biochar Workshop led by Bob Wells, soil scientist Jon Nilsson and Patryk Battle. Learn how to make biochar and its many beneficial uses including greatly enhancing soil life and fertility. Discover innovative ways to maximize its uses for dynamically carbon negative farming and gardening. Visit our website for workshops and many free resources for growing food organically at http://www.livingwebfarms.org

Alternatively, you can simply buy some!

Don't forget to go local & Organic

  • Biochar in UK: Check Carbon Gold, with a variety of Biochar products in different forms (added to compost or on its own) – highly recommended! (and their buckets are great for re-use!)

  • Biochar in US: Check out the Directory on US Biochar Initiative, a not-for-profit organisation promoting the sustainable production and use of biochar through research, policy, technology and doing it!

 

How to use Biochar?

  • Prepare the following mix in a 25L bucket:

    • add garden compost

    • add garden soil

    • EM1

    • Liquid Seaweed

    • (Liquid) Sea mineral

    • molasses

    • clean water (pond water, rain water)

    • comfrey tea (or leaves)

    Submerge the biochar in this mix and let it sit for a week.

  • It’s quite simple really:

    • Add a couple of layers of biochar ideally at 3 and 6 inches below surface (where roots are growing,

    • Or, add a layer on surface of biochar 2 cups /square foot and work into the soil to a depth of 6inches

    • Each time you a plant into the soil, add a handful of Biochar

    • Add biochar to the compost pile

 

Let the magic happen!

 

Biochar Soil amendment: How much biochar to add to soil?

Biochar won’t decompose unlike standard organic soil amendments - it is an amazing, permanent, soil amendment to increase microbial, improve soil structure, reduce compaction and improve oxygen levels in the soil.

So don’t worry too much about how much you’ll use - you are likely to run out of Biochar well before it becomes a problem!

Biochar is so high in carbon that it doesn't break down over time, meaning one application is all you need to permanently improve your soil:

  • You can add to your compost mix or directly to the soil at any time of year to improve nutrient availability. Each time I'm planting Vegs or sowing directly in the ground, I first put a handful of Biochar at the bottom.

  • If you want to add to a new Vegs bed, use the application rate of 1kg per square metre.

  • It's easy to apply and, because of its water holding qualities, it means less maintenance of plants, crops and lawns. It also means you'll save a bit on those water bills.

  • Biochar will increase water-holding capacity and cation exchange capacity of sandy soils; clay and silt soils with added biochar can favour soil aeration. Water-holding capacity in sandy soils can be increased by up to 22% and soil compaction ameliorated by 15%.

  • It also provides the perfect refugia for beneficial microbiology like mycorrhizae and Trichoderma.

 

There are some issues to consider however, as shown in latest scientific research:

The results suggest that high doses of biochar in clay soils are likely to decrease available water content, and surface application of biochar to sandy soils likely increases erosion and particulate matter emissions. Furthermore, biochar may increase the likelihood of excessive soil salinity and decreased soil fertility because of an increase in the pH of alkaline soils causing nutrient precipitation. Given the diversity of effects that biochar may induce in soil, guidelines for future biochar use should adopt a structured and holistic approach that considers all positive and negative effects of biochar.

— 2021, A critical review of the possible adverse effects of biochar in the soil environment

 

That’s why I recommend using Biochar as part of a comprehensive approach to improve soil biology, minerals and nutrients.

 

Does Biochar work for gardening?

Well, the only way to find out is to setup your own experiments - but check out these tests…

See some test results here!

Biochar Fertiliser: Benefits of Biochar

From my own experiments: Guess which pots had Biochar? - planted from seedlings on same days…

 

Biochar Fertiliser: Benefits of Biochar

  • Water retention, resistant to drying out: Because of the way biochar is made, it’s extremely porous and its sponge-like structure lends itself well to water conservation.

  • Biochar will increase water-holding capacity of sandy soils; by up to 22% and soil compaction ameliorated by 15%.

  • clay and silt soils with added biochar can favour soil aeration

  • Significant yield increases have been found where medium and coarse-textured soils have had biochar added, likely to be due to improved water holding capacity

  • Studying 5 soils from a desert area of China, additions of biochar from mixed tree prunings were found to increase soil water content and reduce evaporation compared to untreated soils. Evaporative losses were reduced by larger particle size biochar (1-2 mm) compared to fine biochar (<0.25 mm), this was due to the higher surface area and water absorbing capacity of the larger particles.

  • Biochar derived from maize cobs (slow pyrolysis at 350oC ) added at relatively low rates (0, 2 and 6 ton/ha) to basins growing maize and soya beans was able to increase Available Water Capacity and soil aggregate stability by 3% per 1% added biochar (sandy loam soil in central Zambia), and reduce bulk density of the soil by 3-5% per 1% added biochar. Authors commented that this was very important for “droughty” soils in the region where rainfall can be erratic.

  • As part of another study plant, available water and pore volume significantly increased with biochar additions and bulk density decreased. Yield increased slightly for maize but was not significant with additions of biochar.

  • Using a highly weathered silty clay soil in South Taiwan, an incubation experiment lasting 105 days with biochar from white lead trees mixed in at 0,2.5 and 5%, bulk density was reduced from 1.4% to 1.1%, porosity increased from 41% to 52%, saturated hydraulic conductivity increased from 17% to 33%, the mean weight diameter of particles increased from 46% to 50%. Microbial biomass increased by 50% during the trial, the authors ascribe production of gums and mucilage helping to bind together soil particles. In a simulated rainfall runoff trial soil erosion rate was halved with 2.5% biochar and reduced by nearly 3 times for the 5% rate. The authors recommend a 5% inclusion rate of biochar to amend soil properties and reduce soil erosion

  • Biochars are alkaline in nature and are effective liming agents. Some biochars i.e poultry-litter derived chars are high in carbonates and are particularly effective. Overall soil pH increase in acidic soils was seen as one of the main reasons for crop yield increase with biochar addition.

  • Biochars provide habitats for soil microbes and can also provide them with nutrients as well.

  • soil organic carbon is enhanced by biochar addition and biochar can stabilise organic matter and reduce the rate of breakdown, by absorption of organic compounds and disruption of microbial enzymes which break down organic matter. An example given was of biochar added at 20 and 40 te/ha to a calcareous soil low in organic carbon, the biochar increased the % soil organic carbon by 25% and 42% respectively. In a separate paper Laird et al. found significant (+46% average 6 sites in the USA) increases in soil organic carbon for biochar plus fertiliser compared to fertiliser only. The effect was shown to last for at least 4 years (the length of the trial).

  • Biochars, particularly wood and crop-residue based, improved a range of physical soil properties as follows: bulk density reduced by 7.6%, aggregate stability increased by 8.2%, soil porosity increased by 8.4%, available water capacity increased by 15% and saturated hydraulic conductivity increased by 25%. The above properties will enhance crop growth by improving drainage and allowing greater root penetration of soils.

  • Absorptive properties – reduced availability of toxic metals, Persistent Organic Pollutants and herbicides

  • You can even use it for Lawns:

You can even use Biochar for Lawns…

 

Learn more: The Most comprehensive, Definitive list of Biochar scientific research papers

Yes, I read all these research papers – so you don't have to! – to make sure the Guide “How to make & use Organic Fertiliser at home, to grow more Nutritious Vegs” gives you the evidence behind the information I share, and consider carefully risks and issues relating to using Biochar. As you can see from the research below, it’s still a relatively new topic, which much research progressing around the world for using Biochar both for carbon capture and fertiliser.
If you are a Geek like me, read on!

If you’ve written research which I haven’t spotted yet and would like me to highlight here, please let me know!

 
  • A review of biochars' potential role in the remediation, revegetation and restoration of contaminated soils: Biochars are biological residues combusted under low oxygen conditions, resulting in a porous, low density carbon rich material. Their large surface areas and cation exchange capacities, determined to a large extent by source materials and pyrolysis temperatures, enables enhanced sorption of both organic and inorganic contaminants to their surfaces, reducing pollutant mobility when amending contaminated soils. Liming effects or release of carbon into soil solution may increase arsenic mobility, whilst low capital but enhanced retention of plant nutrients can restrict revegetation on degraded soils amended only with biochars; the combination of composts, manures and other amendments with biochars could be their most effective deployment to soils requiring stabilisation by revegetation. Specific mechanisms of contaminant-biochar retention and release over time and the environmental impact of biochar amendments on soil organisms remain somewhat unclear but must be investigated to ensure that the management of environmental pollution coincides with ecological sustainability.

  • A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis: Increased crop yield is a commonly reported benefit of adding biochar to soils. However, experimental results are variable and dependent on the experimental set-up, soil properties and conditions, while causative mechanisms are yet to be fully elucidated. A statistical meta-analysis was undertaken with the aim of evaluating the relationship between biochar and crop productivity (either yield or above-ground biomass). Results showed an overall small, but statistically significant, benefit of biochar application to soils on crop productivity, with a grand mean increase of 10%. However, the mean results for each analysis performed within the meta-analysis covered a wide range (from −28% to 39%). The greatest (positive) effects with regard to soil analyses were seen in acidic (14%) and neutral pH soils (13%), and in soils with a coarse (10%) or medium texture (13%). This suggests that two of the main mechanisms for yield increase may be a liming effect and an improved water holding capacity of the soil, along with improved crop nutrient availability. The greatest positive result was seen in biochar applications at a rate of 100 t ha−1 (39%). Of the biochar feedstocks considered and in relation to crop productivity, poultry litter showed the strongest (significant) positive effect (28%), in contrast to biosolids, which were the only feedstock showing a statistically significant negative effect (−28%). However, many auxiliary data sets (i.e. information concerning co-variables) are incomplete and the full range of relevant soil types, as well as environmental and management conditions are yet to be investigated. Furthermore, only short-term studies limited to periods of 1 to 2 years are currently available. This paper highlights the need for a strategic research effort, to allow elucidation of mechanisms, differentiated by environmental and management factors and to include studies over longer time frames.

  • Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions: Biochar is the product of pyrolysis produced from feedstock of biological origin. Due to its aromatic structure and long residence time, biochar may enable long-term carbon sequestration. At the same time, biochar has the potential to improve soil fertility and reduce greenhouse gas (GHG) emissions from soils. However, the effect of biochar application on GHG fluxes from soil must be investigated before recommendations for field-scale biochar application can be made. A laboratory experiment was designed to measure carbon dioxide (CO) and nitrous oxide (NO) emissions from two Irish soils with the addition of two different biochars, along with endogeic (soil-feeding) earthworms and ammonium sulfate, to assist in the overall evaluation of biochar as a GHG-mitigation tool. A significant reduction in NO emissions was observed from both low and high organic matter soils when biochars were applied at rates of 4% (w/w). Earthworms significantly increased NO fluxes in low and high organic matter soils more than 12.6-fold and 7.8-fold, respectively. The large increase in soil NO emissions in the presence of earthworms was significantly reduced by the addition of both biochars. biochar reduced the large earthworm emissions by 91 and 95% in the low organic matter soil and by 56 and 61% in the high organic matter soil (with and without N fertilization), respectively. With peanut hull biochar, the earthworm emissions reduction was 80 and 70% in the low organic matter soil, and only 20 and 10% in the high organic matter soil (with and without N fertilization), respectively. In high organic matter soil, both biochars reduced CO efflux in the absence of earthworms. However, soil CO efflux increased when peanut hull biochar was applied in the presence of earthworms. This study demonstrated that biochar can potentially reduce earthworm-enhanced soil NO and CO emissions. Hence, biochar application combined with endogeic earthworm activity did not reveal unknown risks for GHG emissions at the pot scale, but field-scale experiments are required to confirm this.

  • Characteristics of biochar and its application in remediation of contaminated soil: Biochar is produced by thermal decomposition of biomass under oxygen-limited conditions (pyrolysis), and it has received attention in soil remediation and waste disposal in recent years. The characteristics of biochar are influenced mainly by the preparation temperature and biomass. Higher pyrolysis temperature often results in the increased surface area and carbonized fraction of biochar leading to high sorption capability for pollutants. Biochars derived from various source materials show different properties of surface area, porosity and the amount of functional groups which are important concerning on the effect of biochar. Biochar has been proved to be effective in improving soil properties and increasing crop biomass. It has also been suggested that it can even enhance crop resistance to disease. Biochar has recently been used to remediate soil with both heavy metal and organic pollutants. The mechanism is electrostatic interaction and precipitation in the case of heavy metal, and the surface adsorption, partition and sequestration in the case of organic contaminants. However, application of biochar in soil has been shown to result in decreased efficacy of pesticides, which indicates a trade-off between the potentially promising effect of biochar on pesticide remediation and its negative effect on pesticide efficacy. While arguments on the effectiveness of biochar appear sound, further research is needed prior to widespread application of biochar in soil remediation.

  • Effects of biochar on microbial ecology in agriculture soil: a review: Biochar, as a new type of soil amendment, has been obtained considerable attention in the research field of environmental sciences worldwide. The studies on the effects of biochar in improving soil physical and chemical properties started quite earlier, and already covered the field of soil microbial ecology. However, most of the studies considered the soil physical and chemical properties and the microbial ecology separately, with less consideration of their interactions. This paper summarized and analyzed the interrelationships between the changes of soil physical and chemical properties and of soil microbial community after the addition of biochar. Biochar can not only improve soil pH value, strengthen soil water-holding capacity, increase soil organic matter content, but also affect soil microbial community structure, and alter the abundance of soil bacteria and fungi. After the addition of biochar, the soil environment and soil microorganisms are interacted each other, and promote the improvement of soil microbial ecological system together. This review was to provide a novel perspective for the in-depth studies of the effects of biochar on soil microbial ecology, and to promote the researches on the beneficial effects of biochar to the environment from ecological aspect. The methods to improve the effectiveness of biochar application were discussed, and the potential applications of biochar in soil bioremediation were further analyzed.

  • A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy:

    Background: Claims about the environmental benefits of charring biomass and applying the resulting “biochar” to soil are impressive. If true, they could influence land management worldwide. Alleged benefits include increased crop yields, soil fertility, and water-holding capacity; the most widely discussed idea is that applying biochar to soil will mitigate climate change. This claim rests on the assumption that biochar persists for hundreds or thousands of years, thus storing carbon that would otherwise decompose. We conducted a systematic review to quantify research effort directed toward ten aspects of biochar and closely evaluated the literature concerning biochar's stability.

    Findings: We identified 311 peer-reviewed research articles published through 2011. We found very few field studies that addressed biochar's influence on several ecosystem processes: one on soil nutrient loss, one on soil contaminants, six concerning non-CO2 greenhouse gas (GHG) fluxes (some of which fail to support claims that biochar decreases non-CO2 GHG fluxes), and 16-19 on plants and soil properties. Of 74 studies related to biochar stability, transport or fate in soil, only seven estimated biochar decomposition rates in situ, with mean residence times ranging from 8 to almost 4,000 years.

    Conclusions: Our review shows there are not enough data to draw conclusions about how biochar production and application affect whole-system GHG budgets. Wide-ranging estimates of a key variable, biochar stability in situ, likely result from diverse environmental conditions, feedstocks, and study designs. There are even fewer data about the extent to which biochar stimulates decomposition of soil organic matter or affects non-CO2 GHG emissions. Identifying conditions where biochar amendments yield favorable GHG budgets requires a systematic field research program. Finally, evaluating biochar's suitability as a climate mitigation strategy requires comparing its effects with alternative uses of biomass and considering GHG budgets over both long and short time scales.

  • Effects of biochar on soil properties and erosion potential in a highly weathered soil: Highly weathered soils in humid Asia are characterized by low soil fertility and high soil erosion potential. This study evaluates the influences of biochar made from the waste wood of white lead trees (Leucaena leucocephala (Lam.) de Wit) on the physicochemical and biological properties of long-term cultivated, acidic Ultisol. This study used three application rates (0%, 2.5%, and 5% (wt/wt)) of the biochar with an incubation time of 105 d for all cases. Soils were collected at 21 d, 42 d, 63 d, 84 d and 105 d during the incubation period to evaluate changes in soil properties over time. A simulated rainfall event (80 mm h− 1) was performed to estimate soil loss for all treatments at the end of the incubation time. Experimental results indicate that applying biochar improved the physicochemical and biological properties of the highly weathered soils, including significant increases in soil pH from 3.9 to 5.1, cation exchange capacity from 7.41 to 10.8 cmol (+) kg− 1, base cation percentage from 6.40 to 26.0%, and microbial biomass carbon (MBC) from 835 to 1262 mg kg− 1. Compared with the control (i.e., no biochar), biochar application decreased bulk density from 1.4 to 1.1 Mg m− 3, increased Ksat by 1.8 times and increased the mean weight diameter (MWD) of soil aggregates from 2.6 cm to 4.0 cm. Incorporating biochar into the soil significantly reduced soil loss by 50% and 64% at 2.5% and 5% application rates, respectively, compared with the control. The formation of macroaggregates in the biochar-amended soils is the critical factor to improve soil erosion potential. Based on these results, a 5% application rate of biochar is considered as suitable for highly weathered soil because this application rate efficiently improves soil physiochemical properties and reduces soil loss.

  • Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community: Nitrous oxide (N2O) contributes 8% to global greenhouse gas emissions. Agricultural sources represent about 60% of anthropogenic N2O emissions. Most agricultural N2O emissions are due to increased fertilizer application. A considerable fraction of nitrogen fertilizers are converted to N2O by microbiological processes (that is, nitrification and denitrification). Soil amended with biochar (charcoal created by pyrolysis of biomass) has been demonstrated to increase crop yield, improve soil quality and affect greenhouse gas emissions, for example, reduce N2O emissions. Despite several studies on variations in the general microbial community structure due to soil biochar amendment, hitherto the specific role of the nitrogen cycling microbial community in mitigating soil N2O emissions has not been subject of systematic investigation. We performed a microcosm study with a water-saturated soil amended with different amounts (0%, 2% and 10% (w/w)) of high-temperature biochar. By quantifying the abundance and activity of functional marker genes of microbial nitrogen fixation (nifH), nitrification (amoA) and denitrification (nirK, nirS and nosZ) using quantitative PCR we found that biochar addition enhanced microbial nitrous oxide reduction and increased the abundance of microorganisms capable of N2-fixation. Soil biochar amendment increased the relative gene and transcript copy numbers of the nosZ-encoded bacterial N2O reductase, suggesting a mechanistic link to the observed reduction in N2O emissions. Our findings contribute to a better understanding of the impact of biochar on the nitrogen cycling microbial community and the consequences of soil biochar amendment for microbial nitrogen transformation processes and N2O emissions from soil.

  • Soil biochar amendment in a nature restoration area: effects on plant productivity and community composition: Biochar (pyrolyzed biomass) amendment to soils has been shown to have a multitude of positive effects, e.g., on crop yield, soil quality, nutrient cycling, and carbon sequestration. So far the majority of studies have focused on agricultural systems, typically with relatively low species diversity and annual cropping schemes. How biochar amendment affects plant communities in more complex and diverse ecosystems that can evolve over time is largely unknown. We investigated such effects in a field experiment at a Dutch nature restoration area. In April 2011, we set up an experiment using biochar produced from cuttings collected from a local natural grassland. The material was pyrolyzed at 400 degrees C or at 600 degrees C. After biochar or residue (non-pyrolyzed cuttings) application (10 Mg/ha), all plots, including control (0 Mg/ ha) plots, were sown with an 18-species grassland mixture. In August 2011, we determined characteristics of the developed plant community, as well as soil nutrient status. Biochar amendment did not alter total plant productivity, but it had a strong and significant effect on plant community composition. Legumes were three times as abundant and individual legume plants increased four times in biomass in plots that received biochar as compared to the control treatment. Biomass of the most abundant forb (Plantago lanceolata) was not affected by biochar addition. Available phosphorous, potassium, and pH were significantly higher in soils that received biochar than in Control soils. The rate of biological nitrogen fixation and seed germination were not altered by biochar amendment, but the total amount of biological N fixed per Trifolium pratense (red clover) plant was more than four times greater in biochar-amended soil. This study demonstrates that biochar amendment has a strong and rapid effect on plant communities and soil nutrients. Over time these changes may cascade up to other trophic groups, including above- and belowground organisms. Our results emphasize the need for long-term studies that examine not only the short-term effects of biochar amendment, but also follow how these effects evolve over time and affect ecosystem functioning.

  • Biochar as a sorbent for contaminant management in soil and water: Biochar is a stable carbon-rich by-product synthesized through pyrolysis/carbonization of plant- and animal-based biomass. An increasing interest in the beneficial application of biochar has opened up multidisciplinary areas for science and engineering. The potential biochar applications include carbon sequestration, soil fertility improvement, pollution remediation, and agricultural by-product/waste recycling. The key parameters controlling its properties include pyrolysis temperature, residence time, heat transfer rate, and feedstock type. The efficacy of biochar in contaminant management depends on its surface area, pore size distribution and ion-exchange capacity. Physical architecture and molecular composition of biochar could be critical for practical application to soil and water. Relatively high pyrolysis temperatures generally produce biochars that are effective in the sorption of organic contaminants by increasing surface area, microporosity, and hydrophobicity; whereas the biochars obtained at low temperatures are more suitable for removing inorganic/polar organic contaminants by oxygen-containing functional groups, electrostatic attraction, and precipitation. However, due to complexity of soil-water system in nature, the effectiveness of biochars on remediation of various organic/inorganic contaminants is still uncertain. In this review, a succinct overview of current biochar use as a sorbent for contaminant management in soil and water is summarized and discussed.

  • Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers: Semi-arid soils cover a significant area of Earth's land surface and typically contain large amounts of inorganic C. Determining the effects of biochar additions on CO2 emissions from semi-arid soils is therefore essential for evaluating the potential of biochar as a climate change mitigation strategy. Here, we measured the CO2 that evolved from semi-arid calcareous soils amended with biochar at rates of 0 and 20tha(-1) in a full factorial combination with three different fertilizers (mineral fertilizer, municipal solid waste compost, and sewage sludge) applied at four rates (equivalent to 0, 75, 150, and 225kg potentially available Nha(-1)) during 182 days of aerobic incubation. A double exponential model, which describes cumulative CO2 emissions from two active soil C compartments with different turnover rates (one relatively stable and the other more labile), was found to fit very well all the experimental datasets. In general, the organic fertilizers increased the size and decomposition rate of the stable and labile soil C pools. In contrast, biochar addition had no effects on any of the double exponential model parameters and did not interact with the effects ascribed to the type and rate of fertilizer. After 182 days of incubation, soil organic and microbial biomass C contents tended to increase with increasing the application rates of organic fertilizer, especially of compost, whereas increasing the rate of mineral fertilizer tended to suppress microbial biomass. Biochar was found to increase both organic and inorganic C contents in soil and not to interact with the effects of type and rate of fertilizer on C fractions. As a whole, our results suggest that the use of biochar as enhancer of semi-arid soils, either alone or combined with mineral and organic fertilizers, is unlikely to increase abiotic and biotic soil CO2 emissions.

  • Biochar: an effective amendment for remediating contaminated soil: Biochar is a carbon-rich material derived from incomplete combustion of biomass.Applying biochar as an amendment to treat contaminated soils is receiving increasing attention, and is a promising way to improve soil quality. Heavy metals are persistent and are not environmentally biodegradable. However, they can be stabilized in soil by adding biochar. Moreover, biochar is considered to be a predominant sorptive agent for organic pollutants, having a removal efficiency of about 1 order of magnitude higher than does soil/sediment organic matter or their precursor substances alone.When trying to stabilize organic and inorganic pollutants in soil, several features of biochar' s sorption capacity should be considered, viz., the nature of the pollutants to be remediated, how the biochar is prepared, and the complexity of the soil systemin which biochar may be used. In addition, a significant portion of the biochar or some of its components that are used to remediate soils do change over time through abiotic oxidation and microbial decomposition. This change process is commonly referred to as “aging:” Biochar “aging” in nature is inevitable, and aged biochar exhibits an effect that is totally different than non-aged biochar on stabilizing heavy metals and organic contaminants in soils.Studies that have been performed to date on the use of biochar to remediate contaminated soil are insufficient to allow its use for wide-scale field application.Therefore, considerable new data are necessary to expand both our understanding of how biochar performs in the field, and where it can be best used in the future for soil remediation. For example, how biochar and soil biota (microbial and faunal communities)interact in soils is still poorly understood. Moreover, studies are needed on how to best remove new species of heavy metals, and on how biochar aging affects sorption capacity are also needed.

  • Ameliorating Effects of Biochar Derived from Poultry Manure and White Clover Residues on Soil Nutrient Status and Plant growth Promotion–Greenhouse Experiments: Biochar application to agricultural soils is rapidly emerging as a new management strategy for its potential role in carbon sequestration, soil quality improvements, and plant growth promotion. The aim of our study was to investigate the effects of biochars derived from white clover residues and poultry manure on soil quality characteristics, growth and N accumulation in maize (Zea mays L.) and wheat (Triticum aestivum L.) grown in a loam soil under greenhouse conditions. Treatments comprised of: untreated control; mineral N fertilizer (urea N, UN) at the rate of 200, and 100 mg N kg(-1), white clover residues biochar (WCRB), poultry manure biochar (PMB) at 30 Mg ha(-1), and the possible combinations of WCRB+PMB (50:50), UN+WCRB (50:50), UN+PMB (50:50), and UN+WCRB+PMB (50:25:25). The treatments were arranged in a completely randomized design with three replications. Results indicated a significant increase in the growth and biomass production of maize and wheat supplemented with biochars alone or mixed with N fertilizer. Biochars treatments showed varying impact on plant growth depended upon the type of the biochar, and in general plant growth under PMB was significantly higher than that recorded under WCRB. The growth characteristics in the combined treatments (half biochar+half N) were either higher or equivalent to that recorded under full fertilizer N treatment (N200). The biochar treatments WCRB, PMB, and WCRB+PMB (50:50) increased maize shoot N by 18, 26 and 21%, respectively compared to the control while wheat shoot N did not show positive response. The N-uptake by maize treated with WCRB, PMB, and WCRB+PMB (50:50) was 54, 116, and 90 mg g(-1) compared to the 33 mg g(-1) in the control while the N-uptake by wheat was 41, 60, and 53 mg g(-1) compared to 24 mg g(-1) in the control. The mixed treatments (half biochar+half N) increased N-uptake by 2.3 folds in maize and 1.7 to 2.5 folds in wheat compared to the N100 showing increasing effect of biochar on N use efficiency of applied N. Post-harvest soil analysis indicated a significant increase in pH, organic matter, organic C, total N, C:N, and porosity (% pore space) by the added biochars while bulk density (BD) was significantly decreased. The organic matter content in the soil amended with biochars ranged between 19.5 and 23.2 g kg(-1) compared to 11.7 and 10.2 g kg(-1) in the control and N fertilizer treatments while the BD of biochars amended soils (WCRB, PMB, and WCRB+PMB) was 1.07, 1.17, and 1.11 g cm(-3) compared to 1.28 g cm(-1) in the control. In summary, the results of present study highlight the agronomic benefits of biochars in improving the quality of the soil, and promoting growth, yield and N accumulation of both maize and wheat with a consequent benefit to agriculture.

  • Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars: Biochars are products that are rich in carbon obtained by pyrolysis processes that consist in introducing a biomass (such as wood or manure) in a closed container and heating it with little or no available air. This paper reports the impacts of pyrolysis parameters on biochar characteristics. A preliminary examination of the scientific literature revealed that the type of feedstock, the temperature, the heating rate and the gas flow were the major parameters influencing the biochar characteristics. This review highlights the multitude of biochars that can be made and shows the importance of characterizing them before their use in soils. Then we assess how the input of biochars in soils can affect soil parameters. A review of the literature showed modifications on: i) the physical properties of soils (i.e. the modification in soil structure and water retention), ii) the chemical properties of soils (i.e. the modification of pH, cation exchange capacity, nutrient availability, the organic matter content) and iii) the biological properties (i.e. the changes in microbial and faunal communities). All these modifications can lead to an increase in crop productivity, which confirms the value of biochars as a soil amendment. Moreover, biochars can also provide an advantage for soil remediation. Indeed, biochars efficiently reduce the bioavailability of organic and inorganic pollutants. In addition, this review focuses on a specific plant that can be used to produce biochars: Miscanthus, a non-wood rhizomatous C4 perennial grass. Miscanthus presents advantages for biochar production due to: i) its lignocellulosic content, ii) its silicon content, which can mitigate environmental stresses (notably for plants grown on contaminated sites) and iii) the greater surface area of the Miscanthus biochars compared to the biochars produced with other feedstock.

  • Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications: Biochar is produced from the pyrolysis of carbon-rich plant- and animal-residues under low oxygen and high temperature conditions and has been increasingly used for its positive role in soil compartmentalization through activities such as carbon sequestration and improving soil quality. Biochar is also considered a unique adsorbent due to its high specific surface area and highly carbonaceous nature. Therefore, soil amendments with small amounts of biochar could result in higher adsorption and, consequently, decrease the bioavailability of contaminants to microbial communities, plants, earthworms, and other organisms in the soil. However, the mechanisms affecting the environmental fate and behavior of organic contaminants, especially pesticides in biochar-amended soil, are not well understood. The purpose of this work is to review the role of biochar in primary processes, such as adsorption-desorption and leaching of pesticides. Biochar has demonstrable effects on the fate and effects of pesticides and has been shown to affect the degradation and bioavailability of pesticides for living organisms. Moreover, some key aspects of agricultural and environmental applications of biochar are highlighted.

  • The impact of biochars prepared from agricultural residues on phosphorus release and availability in two fertile soils: Biochars have a high variability in chemical composition, which is influenced by pyrolysis conditions and type of biomass. Essential macronutrient P retained in biochar could be released and made available to plants, enhancing plant growth. This study was conducted in order to evaluate whether biochar, produced from agricultural residues, could release P in water, as well as study its potential effect on plant growth and P uptake. Biochar samples were prepared from rice husks, grape pomace and olive tree prunings by pyrolysis at 300 °C and 500 °C. These samples were used for P batch successive leaching experiments in order to determine P release in water. Subsequently, rice husk and grape pomace biochars, produced by pyrolysis at 300 °C, were applied to two temperate soils with highly different pH. A three-month cultivation period of ryegrass (Lolium perenne L.) was studied in threefold replication, while three harvests were accomplished. Treatments comprised control soils (without amendment) and soils amended only with biochar. Results of P leaching tests showed a continuous release of P from all biochars as compared to raw biomass samples, for which the highest P concentrations were detected during the first extraction. Grape pomace and rice husk biochars pyrolyzed at 500 °C showed higher levels of water-extractable P, as compared to their corresponding raw biomass. Biochars, at 500 °C, leached more P in all four extractions, compared to biochars at 300 °C, apart from olive tree prunings biochars, where both pyrolysis temperatures presented a similar trend. Concerning plant yield of ryegrass, rice husk and grape pomace biochars showed positive statistically significant effects on plant yield only in slightly acidic soil in second and third harvests. In terms of P uptake of ryegrass, grape pomace biochars depicted positive significant differences (P < 0.05) in third harvest, in slightly acidic soil, while in first and second harvests positive significant differences were observed in alkaline soil. These results suggest that biochars derived from agricultural residues may act as a source of P in agronomic applications and improve plant growth, although soil conditions may play a significant role.

  • Bacterial Mobilization of Nutrients From Biochar-Amended Soils: Soil amendments with biochar to improve soil fertility and increase soil carbon stocks have received some high-level attention. Physical and chemical analyses of amended soils and biochars from various feedstocks are reported, alongside some evaluations of plant growth promotion capabilities. Fewer studies investigated the soil microbiota and their potential to increase cycling and mobilization of nutrients in biochar-amended soils. This review is discussing the latest findings in the bacterial contribution to cycling and mobilizing nitrogen, phosphorus, and sulfur in biochar-amended soils and potential contributions to plant growth promotion. Depending on feedstock, pyrolysis, soil type, and plant cover, changes in the bacterial community structure were observed for a majority of the studies using amplicon sequencing or genetic fingerprinting methods. Prokaryotic nitrification largely depends on the availability of ammonium and can vary considerably under soil biochar amendment. However, denitrification to di-nitrogen and in particular, nitrous oxide reductase activity is commonly enhanced, resulting in reduced nitrous oxide emissions. Likewise, bacterial fixation of di-nitrogen appears to be regularly enhanced. A paucity of studies suggests that bacterial mobilization of phosphorus and sulfur is enhanced as well. However, most studies only tested for extracellular sulfatase and phosphatase activity. Further research is needed to reveal details of the bacterial nutrient mobilizing capabilities and this is in particular the case for the mobilization of phosphorus and sulfur.

  • Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type: Manure-derived biochars can offer a potential option for the stabilization of manure, while mitigating climate change through carbon sequestration and the attenuation of nitrous oxide emission. A laboratory incubation study was conducted to assess the effects of four different manure-derived biochars produced from different feedstocks (poultry litter and swine manure) at different temperatures (400 or 600 °C). A commonly available standard wood chip biochar, produced at a greater temperature (1000 °C), and non-amended treatments were used as references. Two different soils (sandy and silt-loam) were amended with 2% (w/w) biochar on a dry soil weight basis (corresponding to 20 Mg ha(-1)), with the soil moisture being adjusted to 75% saturation level. After a pre-incubation period (21 days), 170 kg N ha(-1) of NH4NO3 fertilizer was added. Measurements of CO2, N2O, CH4 emissions and soil N mineralisation were carried out on different days during the 85 days of incubation. The net C mineralization and N2O emissions from both soils amended with poultry litter biochar at 400 °C were significantly greater than the other biochar treatments. Nitrate availability was greater in both soils in which the manure-derived biochar was used instead of the standard biochar. All of the biochars increased the pH of the silt-loam, sub-acid soil, but failed to improve the cation exchange capacities (CEC) in either soil. Total C and N, P, K and Mg (except Ca) were significantly increased in the manure-derived biochar amended soils, compared to the Control, and were positively correlated to the biochar nutrient contents. This study indicates that the soil application of biochar engenders effects that can vary considerably according to the biochar properties, as determined on the basis of the feedstock types and process conditions. Low-temperature biochar production from manure represents a possible way of producing a soil amendment that can stabilize C while supplying a significant quantity of nutrients.

  • Recent developments in biochar as an effective tool for agricultural soil management: a review: In recent years biochar has been demonstrated to be a useful amendment to sequester carbon and reduce greenhouse gas emission from the soil to the atmosphere. Hence it can help to mitigate global environment change. Some studies have shown that biochar addition to agricultural soils increases crop production. The mechanisms involved are: increased soil aeration and water-holding capacity, enhanced microbial activity and plant nutrient status in soil, and alteration of some important soil chemical properties. This review provides an in-depth consideration of the production, characterization and agricultural use of different biochars. Biochar is a complex organic material and its characteristics vary with production conditions and the feedstock used. The agronomic benefits of biochar solely depend upon the use of particular types of biochar with proper field application rate under appropriate soil types and conditions.

  • Biochar has no effect on soil respiration across Chinese agricultural soils: Biochar addition to soil has been widely accepted as an option to enhance soil carbon sequestration by introducing recalcitrant organic matter. However, it remains unclear whether biochar will negate the net carbon accumulation by increasing carbon loss through CO2 efflux from soil (soil respiration). The objectives of this study were to address: 1) whether biochar addition increases soil respiration; and whether biochar application rate and biochar type (feedstock and pyrolyzing system) affect soil respiration. Two series of field experiments were carried out at 8 sites representing the main crop production areas in China. In experiment 1, a single type of wheat straw biochar was amended at rates of 0, 20 and 40 tha(-1) in four rice paddies and three dry croplands. In experiment 2, four types of biochar (varying in feedstock and pyrolyzing system) were amended at rates of 0 and 20 tha(-1) in a rice paddy under rice-wheat rotation. Results showed that biochar addition had no effect on CO2 efflux from soils consistently across sites, although it increased topsoil organic carbon stock by 38% on average. Meanwhile, CO2 efflux from soils amended with 40 t of biochar did not significantly higher than soils amended with 20 t of biochar. While the biochars used in Experiment 2 had different carbon pools and physico-chemical properties, they had no effect on soil CO2 efflux. The soil CO2 efflux following biochar addition could be hardly explained by the changes in soil physic-chemical properties and in soil microbial biomass. Thus, we argue that biochar will not negate the net carbon accumulation by increasing carbon loss through CO2 efflux in agricultural soils.

  • Soil biochar amendment shapes the composition of N2O-reducing microbial communities: Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described ‘atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling.

  • Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved: Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil.

  • A critical review of nitrogen mineralization in biosolids-amended soil, the associated fertilizer value for crop production and potential for emissions to the environment: International controls for biosolids application to agricultural land ensure the protection of human health and the environment, that it is performed in accordance with good agricultural practice and that nitrogen (N) inputs do not exceed crop requirements. Data from the scientific literature on the total, mineral and mineralizable N contents of biosolids applied to agricultural land under a wide range of climatic and experimental conditions were collated. The mean concentrations of total N (TN) in the dry solids (DS) of different biosolids types ranged from 1.5% (air-dried lime-treated (LT) biosolids) to 7.5% (liquid mesophilic anaerobic digestion (LMAD) biosolids). The overall mean values of mineralizable N, as a proportion of the organic N content, were 47% for aerobic digestion (AeD) biosolids, 40% for thermally dried (TD) biosolids, 34% for LT biosolids, 30% for mesophilic anaerobic digestion (MAD) biosolids, and 7% for composted (Com) biosolids. Biosolids air-dried or stored for extended periods had smaller total and mineralizable N values compared to mechanically dewatered types. For example, for biosolids treated by MAD, the mean TN (% DS) and mineralizable N (% organic N) contents of air-dried materials were 3% and 20%, respectively, compared to 5% and 30% with mechanical dewatering. Thus, mineralizable N declined with the extent of biological stabilization during sewage sludge treatment; nevertheless, overall plant available N (PAN=readily available inorganic N plus mineralizable N) was broadly consistent across several major biosolids categories within climatic regions. However, mineralizable N often varied significantly between climatic regions for similar biosolids types, influencing the overall PAN. This may be partly attributed to the increased rate, and also the greater extent of soil microbial mineralization of more stable, residual organic N fractions in biosolids applied to soil in warmer climatic zones, which also raised the overall PAN, compared to cooler temperate areas. It is also probably influenced by differences in upstream wastewater treatment processes that affect the balance of primary and secondary, biological sludges in the final combined sludge output from wastewater treatment, as well as the relative effectiveness of sludge stabilization treatments at specific sites. Better characterization of biosolids used in N release and mineralization investigations is therefore necessary to improve comparison of system conditions. Furthermore, the review suggested that some international fertilizer recommendations may underestimate mineralizable N in biosolids, and the N fertilizer value. Consequently, greater inputs of supplementary mineral fertilizer N may be supplied than are required for crop production, potentially increasing the risk of fertilizer N emissions to the environment. Thus greater economic and environmental savings in mineral N fertilizer application are potentially possible than are currently realized from biosolids recycling programmes.

  • The effect of biochar loading rates on soil fertility, soil biomass, potential nitrification, and soil community metabolic profiles in three different soils:

    Purpose: Biochar is increasingly being used as a soil amendment to both increase soil carbon storage and improve soil chemical and biological properties. To better understand the shorter-term (10 months) impacts of biochar on selected soil parameters and biological process in three different textured soils, a wide range of loading rates was applied.

    Materials and methods: Biochar derived from eucalypt green waste was mixed at 0, 2.5, 5, 10 % (wt/wt) with a reactive black clay loam (BCL), a non-reactive red loam (RL) and a brown sandy loam (BSL) and placed in pots exposed to the natural elements. After 10 months of incubation, analysis was performed to determine the impacts of the biochar rates on the different soil types. Also, microbial biomass was estimated by the total viable counts (TVC) and DNA extraction. Moreover, potential nitrification rate and community metabolic profiles were assayed to evaluate microbial function and biological process in biochar-amended soils.

    Results and discussion: The results showed that biochar additions had a significant impact on NH4 and NO3, total C and N, pH, EC, and soil moisture content in both a soil type and loading-dependent manner. In the heavier and reactive BCL, no significant impact was observed on the available P and K levels, or the total exchangeable base cations (TEB) and CEC. However, in the other lighter soils, biochar addition had a significant effect on the exchangeable Al, Ca, Mg, and Na levels and CEC. There was a relatively limited effect on microbial biomass in amended soils; however, biochar additions and its interactions with different soils reduced the potential nitrification at the higher biochar rate in the two lighter soils. Community metabolic profile results showed that the effect of biochar on carbon substrate utilization was both soil type and loading dependent. The BCL and BSL showed reduced rates of substrate utilization as biochar loading levels increased while the opposite occurred for the RL.

    Conclusions: This research shows that biochar can improve soil carbon levels and raise pH but varies with soil type. High biochar loading rates may also influence nitrification and the function and activity of microbial community in lighter soils.

  • Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data

    Highlights

    • Biochar effect on soil physical properties was quantified using meta-analysis.

    • Biochar exerted significant improvements on soil physical properties.

    • Greater effect size was found for Ksat and AWC than on bulk density, porosity and MWD.

    • Greater effect size was exhibited in coarse-textured soils than in fine-textured soils.

    • Application rate and bulk density change correlated for crop residue and wood biochar.

    Abstract: The use of biochar as a soil amendment had been increasingly advocated for its effects on carbon sequestration and greenhouse gas emission mitigation as well as on improvement of soil fertility. However, lack of a general assessment of biochar effects on soil physical properties made it difficult for the recommendations for its practical use for soil quality improvement in global agriculture. In this study, we performed a meta-analysis of literature data published by October 2015 and quantified biochar effects on selected soil physical properties. The literature data covered a range of feedstocks, pyrolysis temperature, soil and experimental conditions. Results showed that biochar amendment significantly improved all the soil physical properties tested. On average, soil bulk density was significantly reduced by 7.6% whereas soil porosity significantly increased by 8.4%, aggregate stability by 8.2%, available water holding capacity (AWC) by 15.1% and saturated hydraulic conductivity by 25.2%. Furthermore, the changes in soil bulk density were negatively correlated to porosity and AWC. In addition, these effects were greater in coarse textured soils than in fine textured soils. While the size of biochar effect on soil physical properties varied with the amount of biochar added, changes in bulk density only was correlated to application rates of crop residue and wood biochar. Overall, biochar amendments could likely improve soil hydrological properties though varying with biochar and soil conditions. Use of biochar thus could offer a viable option to improve moisture storage and water use efficiency for soils poor in organic carbon in arid/semiarid zones. More studies on dynamics of soil hydrological behaviors following biochar amendment should be deserved in field conditions for a sound understanding of biochar's potential in world agriculture.

  • Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits: Biochar production and use are part of the modern agenda to recycle wastes, and to retain nutrients, pollutants, and heavy metals in the soil and to offset some greenhouse gas emissions. Biochars from wood (eucalyptus sawdust, pine bark), sugarcane bagasse, and substances rich in nutrients (coffee husk, chicken manure) produced at 350, 450 and 750°C were characterized to identify agronomic and environmental benefits, which may enhance soil quality. Biochars derived from wood and sugarcane have greater potential for improving C storage in tropical soils due to a higher aromatic character, high C concentration, low H/C ratio, and FTIR spectra features as compared to nutrient-rich biochars. The high ash content associated with alkaline chemical species such as KHCO3 and CaCO3, verified by XRD analysis, made chicken manure and coffee husk biochars potential liming agents for remediating acidic soils. High Ca and K contents in chicken manure and coffee husk biomass can significantly replace conventional sources of K (mostly imported in Brazil) and Ca, suggesting a high agronomic value for these biochars. High-ash biochars, such as chicken manure and coffee husk, produced at low-temperatures (350 and 450°C) exhibited high CEC values, which can be considered as a potential applicable material to increase nutrient retention in soil. Therefore, the agronomic value of the biochars in this study is predominantly regulated by the nutrient richness of the biomass, but an increase in pyrolysis temperature to 750°C can strongly decrease the adsorptive capacities of chicken manure and coffee husk biochars. A diagram of the agronomic potential and environmental benefits is presented, along with some guidelines to relate biochar properties with potential agronomic and environmental uses. Based on biochar properties, research needs are identified and directions for future trials are delineated.

  • Effect of biochar on the presence of nutrients and ryegrass growth in the soil from an abandoned indigenous coking site: The potential role of biochar in the revegetation of contaminated site: Little is known regarding how biochars' feedstock and pyrolysis temperature affect soil function and plant growth. To address this gap in knowledge, 12 biochars (walnut shells, corn cobs, corn straws, and rice straws were separately pyrolyzed at 250, 400, and 600°C for 4h) were applied to soil from an indigenous coking site with application rate of 2.5% (w/w) in a pot experiment to determine the impact of biochar types on macro-nutrients (total and available N, P, and K) and ryegrass growth in the soil from an indigenous coking site. Generally, the total N, P, and K in the soil was not significantly different from that of the control group. However, biochars decreased the available N from 21.76mg·kg-1 for the control to 14.96mg·kg-1. Corn straw and rice straw biochars increased the available P from 2.14mg·kg-1 for the control to 28.35mg·kg-1, specifically at higher pyrolysis temperature, while walnut shell and corn cob biochars had little influence on it regardless of pyrolysis temperature. Biochars increased the available K from 173.58mg·kg-1 for the control to 355.64mg·kg-1, varying as their feedstocks of corn cob>rice straw>corn straw>walnut shell and increasing with the increase of pyrolysis temperature. Correlation analysis suggests that it is responsible for the competition of soluble cations from biochars with K for adsorption sites on the soil surface. Biochars increased the ryegrass biomass from 0.07g·pot-1 for the control to 0.16g·pot-1, with the generally most effective stimulation by biochars produced at 400°C. Ryegrass biomass had obviously positive correlation with available K, indicating its essential role in the growth of ryegrass in the studied soil.

  • Crop response to soils amended with biochar: Expected benefits and unintended risks: Biochar (BC) from biomass waste pyrolysis has been widely studied due to its ability to increase carbon (C) sequestration, reduce greenhouse gas (GHG) emissions, and enhance both crop growth and soil quality. This review summarizes the current knowledge of BC production, characterization, and types, with a focus on its positive effects on crop yield and soil properties versus the unintended risks associated with these effects. Biochar-amended soils enhance crop growth and yield via several mechanisms: expanded plant nutrient and water availability through increased use efficiencies, improved soil quality, and suppression of soil and plant diseases. Yield response to BC has been shown to be more evident in acidic and sandy soils than in alkaline and fine-textured soils. Biochar composition and properties vary considerably with feedstock and pyrolysis conditions so much that its concentrations of toxic compounds and heavy metals can negatively impact crop and soil health. Consequently, more small-scale and greenhouse-sited studies are in process to investigate the role of BC/soil/crop types on crop growth, and the mechanisms by which they influence crop yield. Similarly, a need exists for long-term, field-scale studies on the effects (beneficial and harmful) of BC amendment on soil health and crop yields, so that production guidelines and quality standards may be developed for BCs derived from a range of feedstocks.

  • Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment: Phosphorus ore extraction for soil fertilization supports the demand of modern agriculture, but extractable resource limitations, due to scarcity, impose a P reuse and recycling research agenda. Here we propose to integrate biochar production (pyrogenic carbon) with municipal and agricultural waste management systems, to recover and reuse phosphorous that would otherwise be lost from the ecological food web. A meta-analysis and available data on total P in biochar indicated that P-enriched feedstocks include animal manure, human excreta, and plant-biomass collected from P-polluted sites. Phosphorus in biochar could participate in P equilibriums in soils and is expected to supply P. The release, sorption and desorption of P by biochar will codetermine the potential of P replenishment by biochar and P loss from biochar-amended soils. Abiotic and biotic factors are expected to affect sorption/desorption of P between biochar and soil aggregates, and P acquisition by plants. Chemical extraction, using acid or alkaline solutions, is considered as a means for P retrieval from high P biochar, especially for biochar with high heavy metal contents. To bridge the gap between academia and practice, this paper proposes future development for phosphorus acclamation by pyrolysis: 1) identification of high-P bio-waste for pyrolysis; 2) retrieval of P by using biochar as soil amendment or by chemical leaching; 3) biochar modification by inorganic nutrients, P solubilizing microorganisms and other organic matter; and 4) compatible pyrolysis equipment fit to the current waste management context, such as households, and waste water treatment plants.

  • The efficiency of rice husk Biochar application to grow brassica juncea in the experimental pots of loamy sand soil (VietNam): Biochar was produced from rice husk at temperature from 276 to 760 oC. The objective of the study was to determine the influence of the biochar application to loamy sand soil on crop growth and nutrient balances under greenhouse conditions in Hue city. Loamy sand soil was collected in Huong Chu commune, Huong Tra town. Pot experiments with Brassica juncea(Brassica juncea (L.) Czern.) were conducted in three different types of biochar quantity into soil such as 15 g/pot (765 g/m2), 30 g/pot (1531 g/m2) and 60 g/pot (3062 g/m2). Chemical fertilizer was applied to the soil at rates of 12.2÷ 24.5 g N/m2, 10.3÷ 20.6 g P2O5/m2 and 12.0 ÷ 24.0 g K2O/m2. Experimental results showed that biochar application changed soil quality, resulted in improving the growth of Brassica juncea. We will report the difference of nitrogen and phosphorus balances (crop uptake, leaching, retention, etc.) in experimental pots. Our results indicated that the use of biochar from agricultural by-products would be beneficial for farmers, the environment under soil and climatic conditions in Thua Thien Hue province.

  • Potential impact of biochar types and microbial inoculants on growth of onion plant in differently textured and phosphorus limited soils: Non-renewable phosphorus (P) resources are intensively declining and recyclable P is high in demand for agricultural sector. Biochar as a renewable source of P and its physicochemical properties may improve the nutrients condition in the soil for plant availability. This study was designed to evaluate the interaction of biochar with soil microbes in differently textured and P-limited soils for P availability, root colonization and nutrient uptake by plants. Onion plants were grown in two differently textured soils with two types of biochar, with or without P application, three microbially inoculated treatments and uninoculated control. Plants were grown for 65 days and root-shoot biomass, nutrient concentration and mycorrhizal root colonization were analyzed. The WinRhizo was used to evaluate root attributes such as length, surface area and volume of roots. Biochar addition enhanced the nutrient uptake and plant biomass in the presence of P and microbial inoculants. Root colonization was notably increased in biochar + mycorrhizal inoculated plants. Biochar and soil type interactions may develop a unique behavior of nutrient uptake, root colonization, plant growth and root attributes. Biochar in combination with microbial inoculants could be considered a potentially renewable source of P fertilizer.

  • Impact of biochar amendment on the abundance and structure of diazotrophic community in an alkaline soil: Biological nitrogen (N) fixation contributes to the pool of plant-available N in soil and helps to minimize the use of inorganic N fertilizer in agricultural ecosystems. Although diazotrophs play an important role in the biological fixation of atmospheric N2 in a range of soil types, the knowledge of their response to biochar amendment is still limited. Here, using the nifH gene as a molecular marker, we investigated the short-term effect of biochar application on the abundance, community composition and activity of diazotroph in an alkaline soil. A field trial was established before soybean sowing in 2017 and five treatments were included: inorganic NPK fertilizer (CK); inorganic NPK fertilizer + wheat straw (CS); inorganic NPK fertilizer + low rate of biochar (B4); inorganic NPK fertilizer + high rate of biochar (B20); biochar compound fertilizer (BCF). The field trial was lasted for one crop season and samples were collected by soybean harvest. The results showed that biochar addition generally increased the concentration of soil organic carbon (SOC) and available phosphorous (AP), while B20 treatment significantly increased the total nitrogen (TN) and available potassium (AK). Biochar addition treatments increased the nifH gene abundance and altered the community structure of soil diazotrophs. The abundance of nifH gene was positively correlated with SOC, indicating that increasing SOC potentially affected diazotrophic population in the alkaline soil. Community structure of diazotrophs in the CS treatment was similar with the CK treatment; thus, there was no effect of crop straw on diazotroph community structure. In contrast, the application of biochar and biochar compound fertilizer altered the diazotroph community structure with shifts in the dominant genus, with higher Sinorhizobium in the biochar-amended treatments. SOC, C/N and AP were the key factors correlated with change in diazotroph community structure. Overall, our results suggest that the addition of biochar or biochar compound fertilizer could increase the abundance and alter the community structure of diazotrophs, which may benefit N fixation in alkaline agricultural soil. Conversely, the direct straw return had no effect on the abundance and community structure of diazotrophs.

  • Biochar amendment improves crop production in problem soils: Problem soils are referred to as those with poor physical, chemical, and biological properties that inhibit or prevent plant growth. These poor properties may be a result of soil formation processes but are largely due to inappropriate farming practices or anthropogenic pollution. The world has lost a third of its arable land due to erosion and pollution in the past 40 years. Thus, there is an urgent need for improving and remediating problem soils. As a novel multifunctional carbon material, biochar has been widely used as a soil amendment for improving soil quality. Previous reviews have summarized the characteristics of biochar, the interactions with various soil contaminants, and the effects on soil quality, soil productivity, and carbon sequestration. Relatively limited attention has been focused on the effects of biochar amendment on plant growth in problem soils. As a result, a comprehensive review of literature in the Web of Science was conducted with a focus on the effects of biochar amendment on plant growth in problems soils. The review is intended to present an overview about problem soils, biochars as functional materials for soil amendment, how amended biochars interact with soils, soil microbes, and plant roots in remediation of problem soil and improve plant growth. Additionally, existing knowledge gaps and future directions are discussed. Information gathered from this review suggests that biochar amendment is a viable way of improving the quality of problem soils and enhancing crop production. It is anticipated that further research on biochar amendment will increase our understanding on the interactions of biochar with components of problem soils, speed up our effort on soil remediation, and improve crop production in problem soils.

  • The effect of biochar amendment on N-cycling genes in soils: A meta-analysis: Nitrogen (N) cycling by soil microbes can be estimated by quantifying the abundance of microbial functional genes (MFG) involved in N-transformation processes. In agro-ecosystems, biochars are regularly applied for increasing soil fertility and stability. In turn, it has been shown that biochar amendment can alter soil N cycling by altering MFG abundance and richness. However, the general patterns and mechanisms of how biochar amendment modifies N-cycling gene abundance have not been synthesized to date. Here, we addressed this knowledge gap by performing a meta-analysis of existing literatures up to 2019. We included five main marker genes involved in N cycling: nifH, amoA, nirK, nirS and nosZ. We found that biochar addition significantly increased the abundance of ammonia-oxidizing archaea (AOA), nirK, nirS and nosZ by an average of 25.3%, 32.0%, 14.6% and 17.0%, respectively. Particularly, biochar amendment increased the abundances of most N-cycling genes when soil pH changed from very acidic (pH < 5) to acidic (pH: 5.5-6.5). Experimental conditions, cover plants, biochar pyrolysis temperature and fertilizer application were also important factors regulating the response of most N-cycling genes to biochar amendment. Moreover, soil pH significantly correlated with ammonia-oxidizing bacteria (AOB) abundance, while we found that most genes involved in nitrification and denitrification were not significantly correlated with each other across studies. Our results contribute to developing quantitative models of microbially-mediated N-transforming processes in response to biochar addition, and stimulate research on how to use biochar amendment for reducing reactive N gas emissions and enhancing N bioavailability to crop plants in agro-ecosystems.

  • A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security: The beneficial role of biochar on improvement of soil quality, C sequestration, and enhancing crop yield is widely reported. As such there is not much consolidated information available linking biochar modulated soil condition improvement and soil nutrient availability on crop yields. The present review paper addresses the above issues by compilation of world literature on biochar and a new dimension is introduced in this review by performing a meta-analysis of published data by using multivariate statistical analysis. Hence this review is a new in its kind and is useful to the broad spectrum of readers. Generally, alkalinity in biochar increases with increase in pyrolysis temperature and majority of the biochar is alkaline in nature except a few which are acidic. The N content in many biochar was reported to be more than 4% as well as less than 0.5%. Poultry litter biochar is a rich source of P (3.12%) and K (7.40%), while paper mill sludge biochar is higher in Ca content (31.1%) and swine solids biochar in Zn (49810 mg kg-1), and Fe (74800 mg kg-1) contents. The effect of biochar on enhancing soil pH was higher in Alfisol, Ferrosol and Acrisol. Soil application of biochar could on an average increase (78%), decrease (16%), or show no effect on crop yields under different soil types. Biochar produced at a lower pyrolysis temperature could deliver greater soil nutrient availabilities than that prepared at higher temperature. Principal component analysis (PCA) of available data shows an inverse relationship between [pyrolysis temperature and soil pH], and [biochar application rate and soil cation exchange capacity]. The PCA also suggests that the original soil properties and application rate strongly control crop yield stimulations via biochar amendments. Finally, biochar application shows net soil C gains while also serving for increased plant biomass production that strongly recommends biochar as a useful soil amendment. Therefore, the application of biochar to soils emerges as a ‘win-win strategy' for sustainable waste management, climate change mitigation and food security.

  • A quantitative understanding of the role of co-composted biochar in plant growth using meta-analysis: The combined use of biochar and compost as a soil amendment presents benefits to crops and nutrient cycling. Although there are literature reviews regarding biochar and biochar-compost mixtures, a quantitative literature review on the role of co-composted biochar (hereby called COMBI) in plant productivity is currently missing. The goal of this review paper is to find evidence-based measures of the effects of application rates, soil pH, plant types, biochar feedstock, and compost materials, on plant productivity. Plant productivity covers a variety of measurements but mostly refers to grain yield and above-ground biomass. Response ratio was selected as the effect size. Funnel plot showed that the studies were reasonably symmetrically distributed around the mean effect size. Results showed that application rates of <20 t/ha and >30 t/ha significantly increased plant productivity by 48.3 and 15.7%, respectively, while no significant yield increases were found for the application rates between 20 and 30 t/ha. When data was grouped based on the soil pH, the greatest increase in plant productivity was found to be at acidic soil pH values (pH 4-5), which was expected because the liming effect of biochar is often reported as one of the main mechanisms behind the increased crop yields. When different plant species were compared, cereal grasses grown with COMBI yielded significantly higher grain yields (39.7%). Rice husk biochar yielded the highest increase in productivity but this result was based on only one study. The second highest increase was obtained with wood-based biochars (29.4%) based on ten studies. The effect sizes found with our meta-analyses are based on 14 research works worldwide and represent the most updated information regarding the effects of COMBI on plant production. As more data on COMBI become available, data analyses can be updated to make more robust comparisons.

  • Application Research of Biochar for the Remediation of Soil Heavy Metals Contamination: Soil contamination by heavy metals threatens the quality of agricultural products and human health, so it is necessary to choose certain economic and effective remediation techniques to control the continuous deterioration of land quality. This paper is intended to present an overview on the application of biochar as an addition to the remediation of heavy-metal-contaminated soil, in terms of its preparation technologies and performance characteristics, remediation mechanisms and effects, and impacts on heavy metal bioavailability. Biochar is a carbon-neutral or carbon-negative product produced by the thermochemical transformation of plant- and animal-based biomass. Biochar shows numerous advantages in increasing soil pH value and organic carbon content, improving soil water-holding capacity, reducing the available fraction of heavy metals, increasing agricultural crop yield and inhibiting the uptake and accumulation of heavy metals. Different conditions, such as biomass type, pyrolysis temperature, heating rate and residence time are the pivotal factors governing the performance characteristics of biochar. Affected by the pH value and dissolved organic carbon and ash content of biochar, the interaction mechanisms between biochar and heavy metals mainly includes complexation, reduction, cation exchange, electrostatic attraction and precipitation. Finally, the potential risks of in-situ remediation strategy of biochar are expounded upon, which provides the directions for future research to ensure the safe production and sustainable utilization of biochar.

  • Could biochar amendment be a tool to improve soil availability and plant uptake of phosphorus? A meta-analysis of published experiments: As one of the most important nutrients for plant growth, phosphorus was often poorly available in soil. While biochar addition induced improvement of soil structure, nutrient and water retention as well as microbial activity had been well known, and the effect of biochar soil amendment (BSA) on soil phosphorus availability and plant P uptake had been not yet quantitatively assessed. In a review study, data were retrieved from 354 peer-reviewed research articles on soil available P content and P uptake under BSA published by February 2019. Then a database was established of 516 data pairs from 86 studies with and without BSA in agricultural soils. Subsequently, the effect size of biochar application was quantified relative to no application and assessed in terms of biochar conditions, soil conditions, as well as experiment conditions. In grand mean, there was a significant and great effect of BSA on soil available P and plant P uptake by 65% and 55%, respectively. The effects were generally significant under manure biochar, biochar pyrolyzed under 300 °C, soil pH <5 and fine-textured soil, and soils that are very low in available P. Being significantly correlated to soil P availability (R2=0.29), plant P uptake was mostly enhanced with vegetable crops of high biomass yield. Overall, biochar amendment at a dosage up to 10 t ha-1 could be a tool to enhance soil availability and plant uptake of phosphorus, particularly in acid, heavy textured P-poor soils.

  • A Review on Current Status of Biochar Uses in Agriculture: In a time when climate change increases desertification and drought globally, novel and effective solutions are required in order to continue food production for the world's increasing population. Synthetic fertilizers have been long used to improve the productivity of agricultural soils, part of which leaches into the environment and emits greenhouse gasses (GHG). Some fundamental challenges within agricultural practices include the improvement of water retention and microbiota in soils, as well as boosting the efficiency of fertilizers. Biochar is a nutrient rich material produced from biomass, gaining attention for soil amendment purposes, improving crop yields as well as for carbon sequestration. This study summarizes the potential benefits of biochar applications, placing emphasis on its application in the agricultural sector. It seems biochar used for soil amendment improves nutrient density of soils, water holding capacity, reduces fertilizer requirements, enhances soil microbiota, and increases crop yields. Additionally, biochar usage has many environmental benefits, economic benefits, and a potential role to play in carbon credit systems. Biochar (also known as biocarbon) may hold the answer to these fundamental requirements.

  • Greenhouse Gas Inventory Model for Biochar Additions to Soil: Stabilizing the global climate within safe bounds will require greenhouse gas (GHG) emissions to reach net zero within a few decades. Achieving this is expected to require removal of CO2 from the atmosphere to offset some hard-to-eliminate emissions. There is, therefore, a clear need for GHG accounting protocols that quantify the mitigation impact of CO2 removal practices, such as biochar sequestration, that have the potential to be deployed at scale. Here, we have developed a GHG accounting methodology for biochar application to mineral soils using simple parameterizations and readily accessible activity data that can be applied at a range of scales including farm, supply chain, national, or global. The method is grounded in a comprehensive analysis of current empirical data, making it a robust method that can be used for many applications including national inventories and voluntary and compliance carbon markets, among others. We show that the carbon content of biochar varies with feedstock and production conditions from as low as 7% (gasification of biosolids) to 79% (pyrolysis of wood at above 600 °C). Of this initial carbon, 63-82% will remain unmineralized in soil after 100 years at the global mean annual cropland-temperature of 14.9 °C. With this method, researchers and managers can address the long-term sequestration of C through biochar that is blended with soils through assessments such as GHG inventories and life cycle analyses.

  • Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis:

    The use of biochar is changing, and the combined application of biochar with fertilizer is increasingly gaining acceptance. However, the yield gains results reported in the existing literature through the co-application of fertilizer with biochar are conflicting. To resolve this, we utilized a meta-analysis of 627 paired data points extracted from 57 published articles to assess the performance of the co-application of biochar and fertilizers on crop yield compared with the corresponding controls. We also studied the impact of biochar characteristics, experimental conditions, and soil properties on crop yield. Our analysis showed that individually, biochar and inorganic fertilizer increased crop yield by 25.3% ± 3.2 (Bootstrap CI 95%) and 21.9% ± 4.4, respectively. The co-application of biochar with both inorganic and organic fertilizers increased crop yield by 179.6% ± 18.7, however, this data needs to be treated with caution due to the limited dataset. The highest yield increase was observed with amendments to very acidic soils (pH ≤5), but the benefits of biochar were not affected by the rate and the time after the application. In addition, the effects of biochar are enhanced when it is produced at 401-500 °C with a C:N ratio of 31-100. Our results suggest that the co-application of biochar with either inorganic and/or organic fertilizers in acidic soils increase crop productivity compared to amendment with either fertilizer or biochar. Our meta-analysis supports the utilization of biochar to enhance the efficiency and profitability of fertilizers.

  • Potential hazards of biochar: The negative environmental impacts of biochar applications: Biochar has been widely used as an environmentally friendly material for soil improvement and remediation, water pollution control, greenhouse gas emission reduction, and other purposes because of its characteristics such as a large surface area, porous structure, and abundant surface O-containing functional groups. However, some surface properties (i.e., (i) some surface properties (i.e., organic functional groups and inorganic components), (ii) changes in pH), and (iii) chemical reactions (e.g., aromatic C ring oxidation) that occur between biochar and the application environment may result in the release of harmful components. In this study, biochars with a potential risk to the environment were classified according to their harmful components, surface properties, structure, and particle size, and the potential negative environmental effects of these biochars and the mechanisms inducing these negative effects were reviewed. This article presents a comprehensive overview of the negative environmental impacts of biochar on soil, water, and atmospheric environments. It also summarizes various technical methods of environment-related risk detection and evaluation of biochar application, thereby providing a baseline reference and guiding significance for future biochar selection and toxicity detection, evaluation, and avoidance.

  • Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements: Soil contamination with potentially toxic elements (PTEs) is considered one of the most severe environmental threats, while among remediation strategies, research on the application of soil amendments has received important consideration. This review highlights the effects of biochar application on soil properties and the bioavailability of potentially toxic elements describing research areas of intense current and emerging activity. Using a visual scientometric analysis, our study shows that between 2019 and 2020, research sub-fields like earthworm activities and responses, greenhouse gass emissions, and low molecular weight organic acids have gained most of the attention when biochar was investigated for soil remediation purposes. Moreover, biomasses like rice straw, sewage sludge, and sawdust were found to be the most commonly used feedstocks for biochar production. The effect of biochar on soil chemistry and different mechanisms responsible for PTEs' immobilization with biochar, are also briefly reported. Special attention is also given to specific PTEs most commonly found at contaminated soils, including Cu, Zn, Ni, Cr, Pb, Cd, and As, and therefore are more extensively revised in this paper. This review also addresses some of the issues in developing innovative methodologies for engineered biochars, introduced alongside some suggestions which intend to form a more focused soil remediation strategy.

  • A critical review of the possible adverse effects of biochar in the soil environment: Biochar has received extensive attention because of its multi-functionality for agricultural and environmental applications. Despite its many benefits, there are concerns related to the long-term safety and implications of its application, mainly because the mechanisms affecting soil and organism health are poorly quantified and understood. This work reviews 259 sources and summarises existing knowledge on biochar's adverse effects on soil from a multiangle perspective, including the physicochemical changes in soil, reduced efficiency of agrochemicals, potentially toxic substances in biochar, and effects on soil biota. Suggestions are made for mitigation measures. Mixed findings are often reported; however, the results suggest that high doses of biochar in clay soils are likely to decrease available water content, and surface application of biochar to sandy soils likely increases erosion and particulate matter emissions. Furthermore, biochar may increase the likelihood of excessive soil salinity and decreased soil fertility because of an increase in the pH of alkaline soils causing nutrient precipitation. Regarding the impact of biochar on (agro)chemicals and the role of biochar-borne toxic substances, these factors cannot be neglected because of their apparent undesirable effects on target and non-target organisms, respectively. Concerning non-target biota, adverse effects on reproduction, growth, and DNA integrity of earthworms have been reported along with effects on soil microbiome such as a shift in the fungi-to-bacteria ratio. Given the diversity of effects that biochar may induce in soil, guidelines for future biochar use should adopt a structured and holistic approach that considers all positive and negative effects of biochar.

  • Evaluation of long-term carbon sequestration of biochar in soil with biogeochemical field model: Return of biomass-derived biochar (BC) into soil has been considered as one of the carbon sequestration (CS) methods. It is important to evaluate the long-term biochar CS potential by integrating the complex physical interferences and biochemical reactions in real soil. This study incorporated biochar into a biogeochemical field model and established a daily-resolution simulator to assess 5-, 50-, 500-year CS potential upon Soil-Biochar-Plant interaction. Through the scenario simulation of burying 7.5-75 t/ha BC-C in a 50 cm-depth rainfed cropland soil with corn planted, we found biochar could retain 483-557 kg C/t BC-C after 500 years' natural decomposition, although soil pedoturbation and plant erosion accelerated its mineralization. Moreover, biochar provided labile-C to compensate microbial decomposition and modified long-term soil climate, resulting in a decrease in soil organic carbon degradation of 44-265 kg C/t BC-C. Furthermore, biochar promoted plant photosynthetic performance by offering exogenous nutrients, equivalent to capturing 66-1039 kg C/t BC-C over 50 years. But biochar limited endogenous nutrient release and inhibited plant growth after exogenous nutrients exhausted, so total CS decreases yearly after reaching an upper limit (1030-1722 kg C/t BC-C). A total of 651-725 kg C/t BC-C could be sequestered after 500 years. And biochar is more potential in infertile and arid soils. Overall, this study indicates the necessity of taking the biogeochemical reactions into consideration to assess biochar long-term CS, and it further demonstrates biochar soil implementation is a prospective carbon-negative strategy.